Title: A Simple Approach to Mdeling Uncertainty in C4+4

Author : Evan Pl anning

I nt roducti on

Many cl asses have been introduced in the pages of this nagazi ne
and el sewhere which use overloading and other features of C++ to
produce specialized mathenatical classes which can be used |ike
built-in types: nore conpact representation

rational nunbers, conplex nunbers, vectors, matrices, and nore.
This article presents the first of a famly of classes which

generalize floating-point. nunbers to include an estimate of the
uncertainty of each nunber.

Mot i vati on

As an exanple of a floating point application consider a spacecraft
trajectory simulator. Such a program might start with an

initial position and velocity for the spacecraft, and project

it forward in tinme. For each tinmestep it would nove the

spacecraft in accordance with its current velocity and

adjust the velocity to account for the gravitational attraction

of significant bodies. I1f the programis inplenmented
perfectly, then for a given set of initial conditions it wll
be able to predict perfectly where the spacecraft will be at

any future nonent.

But in the real world there may be some uncertainty in our

know edge of the spacecraft’s initial position and velocity, as
well as the positions and nasses of planets. So what is really
needed is a simulator that can track the effect of initial
uncertainties and provide an assessnment of the uncertainty in
the final position. When a spacecraft is headed for a close
encounter with an asteroid, “mssion planners will need to

know nore than whether the nost likely path of the spacecraft

i npacts the asteroid. They will need to know the probability
of a collision.

If our exanple program were coded in C, the options for adding
uncertainty appraisal to this application would be: (1) ignore
it, (2) try a nunber of plausible sets of inputs and | ook at

the output, or (3) rewite the application to keep an assessnent
of uncertainty alongside the expected value of each uncertain
value . Wth c++ we add option 4: use an Uncertai nDoubl e variable
in place of each possibly uncertain double, and let the
UncertainDouble cl ass take care of all the bookkeepi ng.

| mpl enent ati on

The code presented here follows the Gaussian nbdel of uncertainty
(see sidebar) and is built around two private

doubl e data menbers: value (also called nean) and uncertainty
(also called sigma). This class is known

as UDboubleMS for uncertain double nean-signa. Listing 1is the
definition of this class, and for the npbst part |ooks like the
definition of any nmathematical. class. mean () and deviation ()
menber functions give read-only access to the data nenbers.

O her differences are discussed bel ow

Listing 2 gives the inplenents.ti.ons of the constructors and

destr uctors for UDoubleMS. The constructors

initialize the value and uncertainty data members. The
destructor does nothing.

C++’s built-in double data type can be seen as the degenerate
case of UboubleMS with uncertainty equal to zero. In fact

when uncertainty is zero, menbers of this class do behave exactly
like the built-in double type. For this reason, one constructor
accepts a single argunent of type double. This constructor uses
the argunment as the value and defaults the uncertainty to 0.0.
‘“I"his is the default conversion from double to UDoubleMS.

The uncertainty associated with a number tells us how nmany

digits are significant, and so allows us to pxint that. number nore
intelligently than is usual wth doubles.

The function uncertain print () (Listing 3)

takes a nmean and a deviation (and an optional ostream) and prints
out nean +/- deviation, carefully printing only as many digits

of the nmean as correspond to the first two digits of the deviation.

("+/-" is read “plus or mnus”.)

SO 1.2345 +/- 0.2387 prints as "1.23 4+/- 0.24" and 0.012345 +/- 5.321
prints as "0.0+4/- 5.3". This function is used by UDboubleMS’s
operator<< () (not shown). -t is inplemented outside of the

UDoubleMS cl ass so that it can be used by other Ubouble classes.

Operator>>() is much sinpler and is simlarly inplemented in terns of
uncertain_read() .

Propagation of Single Uncertainties

If x is 0.5 +/~- 0.1, what. is f(x)? W could nake a good guess

by looking at. £(0.5) for the nean and then at £(0.4) and f(0.6)

to estimate the deviation. Mat hematically, in the CGaussian approxi mation
we need to know the value of f£() at 0.5 (£(0.5)) and the slope of

f () in the neighborhood of 0.5 (f' (0.5)) (the slope or derivative

is the ratio of small changes in f(x) to small change in x) .

The mean of f(x) is f£() applied to the nmean of x and the deviation

of f(x) is the deviation of x scaled by the slope of f() at

the nmean of x: f(xX) = f(<x> +/- dx) = f£(<x>) +/- f’ (<x>)dx. This
formula may | ook daunting but, it is really quite sinple to use when
the slope of f£() is known. And the slope is known for all functions

we need to make UDoubleMS act |ike double: unary +, unary -, acos() ,
asin(), atan(), atan2(), ceil (), cos(), cosh(), exp(), fabs(), floor (),
fmod (), frexp(), ldexp(), log(), logl0(), modf (), PoN), sSine, sinh(),
sqrt (), tan(), and tanh().

Unary + and — have slopes of 1.0 and -1.0 respectively and so are
easily inplemented (Listing 4) . The rest of these functions are
witten using know edge of slopes. For exanple, the slope of sino
is cos{), the slope of expo is exp(), the slope of ceil()is o
(except at integers, where it is infinite.) (Listing 5)

VWhen the slope of a function is not known in advance, it
can be approxi mated by taking the difference between

f(nmean + sigma) and f(mean - sigm) . IListing 6 presents
the one argunent version of PropagateUncertaintiesBySlope (),
whi ch does exactly this.

Mul ti pl e Sources of Uncertainty

Many operations conbine two potentially uncertain inputs into one
uncertain output. The sinplest of these is binary "i":if ais
1.04/- 0.1. andb is 2.04/- 0.1 what is ¢c = a + b? The val ue

of ¢c follows famliar rules: 1.0 + 1..0 =- 2.0. But the uncertainty of c

wi || depend on whether or not a and b arc correlated, that is whether
or not their uncertainties share a conmpn source. As extreme cases

ere a and b are positively and negatively correlated we can consider
possibilities that b is a and that b is (2 — a)

‘1" he first case might arise when we have

two blocks known to be identical and we neasure one. W are then
asking how long two of the blocks laid end-to-end are, and of course
this is exactly twice the length of a single block. In this case
c=a+b=a+a=2.0+ra=2.0*(1.0+/-0,1) 2.0 +-- 0.2

Here the uncertainties of a and b have the sane source

and the same sign, SO they simply add. You might think of them as
paral | el vectors. [Fig Ia] Using an ideal uncertain double (Ubouble)
class this case might be coded:

UDouble a(1.0, 0.1), b;

b=a;

tout << a << “ 4+ “ << b << * = v << (a+ b) << endl:;
which prints:

1.00 +/- 0.10 + 1.00 +4/- 0.10 = 2.00 +/-0.20

The case where b is (2 - a) is somewhat harder to inagine, but

perhaps we have a box known to be 2 neters long and two bl ocks that
together fill it perfectly. So even though our neasurenent of

block a is inperfect we know that b is (2 - a). 1In this case
c=a+b=a+ (2 -a) =2+ (a-a)=2.0+/-0.0

Since the uncertainties of a and b have a common

source but opposite sense they subtract. You nmight think of them as
parallel vectors pointing in opposite directions (antiparallel vectors)
[Fig | Db]. This case night be coded:

UDouble a (1.0, 0.1), b;

b =20 - a

tout << a << “ + " << b <<* == " << (a + b) << endl:
which prints:

1.00 +/-0.10 + 1.00 4/- 0.10 = 2.0000000 4+/- 0.0

UDoubleMS is a class tenplate in order to allow it to expand

to two alnost identical. classes. ‘l’he int parameter is correlated
is conceptually a boolean, but | didn't use the new boolean type
because it is not yet w dely avail able. When is correlated

is true uncertainties add simply; when it is false uncertainties
add by hypotenuse as we wll. see bel ow The (correlated version
of UDoubleMS al |l ows

the uncertainty private data nenber to Lake on negative val ues

so that anti-correlated uncertainties can cancel when added.

The first case above would have the internal representations

a= (1.0, 0.1), b = (1.0, 0.1) but in the second case this would
be a = (1.0, 0.1), b = (1.0, -0.1). So addi ng the correspondi ng
components gives the answers we derived above. Listing 7 is
operator+=() and binary operator+ () .

The uncorrelated case arises when the uncertainties in a and b

cone from i ndependent sources. In this case the

uncertainty vectors would be (on average) at right angles and

their sum woul d

be their hypotenuse, or the square root. of the sumof their squares:
sqrt (0.1°2 + 0.172) = 0.1 * sqrt(2) -= 0.14 [Frig l.c] so
c=a+b=200 +/-0.14.

This case is an application of the uncorrelated version of the
UboubleMS<is correlated> class, UDoubleMS$<0>. This case can

be coded:

" - UDouble a(1 .0, 0.1), b(1.0, 0.1);
tout << a << “ + " <<b<< " = * << (a+b) << endl;

which prints:

1.00 4+/- 0.10 + 1.00 +/- 0.10 = 2.00 +4/-0.14

“1"he mpst conplicated case of adding uncertainties is when the two
operands are partially

correl at ed. 1f a and b are independent and c is their sum as in
the previous case, then a and ¢ are neither perfectly correlated

nor perfectly independent. ais correlated with the a portion of

C but uncorrelated With the b portion of c. [Fig 1.d] The code
presented here cannot trace such partial correlations, but nore
advanced net hods can do so. Such cl asses may be presented

in future articles here and prelinnary inplenentations are included
on the code disk(?) . One such case mi ght be coded:

UDouble a(1.0, 0.1), b(1.0, 0.1), c;
/! make “c” be half correlated with “a” and half with “b”
/! renormalized to be 1.00 +/- 0.10

=(a+b) / sgrt (2.0) + 1.0 - sqrt(2.0);

tout << a << “ +- Y << ¢ << nmw = " << (g + C) << endl;
which prints:
1.00 +/-0.120 + 1.00 +/- 0.10 = 2.00 +/- 0.18

Al binary functions use slope to

figure out the uncertainty from each source and then add the two
uncertainties either simply (if correlated) or as hypotenuse

(not correl ated). The operators which work this way are +=, -=, *=
/=, and binary +, -, *, and /, and fmod(), atan2(), and pow() . Sone
exanpl es are given in Listings 7 & 8.

Listing 9 shows how uncertainties are propagated by slope through
an unknown function of two uncertain variables.

The only operations that are defined for type double that
are not also defined for UDoubleMS are casting to other

nunerical types and relational operators. This is because
UDoubles are conceptual ly nulti-val ued. What shoul d
UDoubleMS$S<0> = ud(100.0, 3.0);
int i = ud,

yield? wud is 100.0 +/- 3.0 and so is likely

to be near 97 or 98 or 99 or 100 or 101 or 102 or 103, but could well
be anywhere from 90 to 110, and in theory night be -10,230.

The nost sensible single value is the nean, and if this is wanted

it is available through int i = ud.mean() ; . Similarly there

is no single answer to the question of whet her 100.0 +/- 3.0

is greater than 101.0 +/- 6.0. It is possible to assign

a probablllty to this value but if that probability is expressed
as a sinple floating-point. number between 0.0 and 1.0, the

expressions like if (uda > udb) will alnpbst always evaluate as

true. If a conparison of neans is wanted then the appropriate idiom is
i f (uda.mean() > udb.mean()) .

| npl enent ati on Issues

I have found it useful during developnent to include all funct ion
definitions in situ in the class tenplate definition. While many
dislike this approach because it may use nore conpile tine and

because it clutters the class definition,

it saves a great deal of time in developnment. when only one file
must be changed for any change of int erface and it decreases the
total code size

Another thing that has proved useful during this devel opnent
effort is that this package contains nultiple very different

i mpl ement ati ons of the same functionality. This collection of
cl asses now contains a UDboubleTest class that has members of
the other UDouble types and distributes all operations to the
menbers . In this way it is easy to conpare the output of
various nethods and see at a glance where they differ.

This code uses one newish C++ feature: a template with a paraneter
that is not. a type. Using a new feature limted ny portability

enough that | decided against trying to add any other new features
i ke exceptions and the bool type.

Denmo Program

The code disk also contains a program that puts UDoubleMS through
its paces and explains the results. This demo program is

i npl enented nostly in ternms of another class, UDoubleTest, which

is conposed of one private UDoubleMS<0> member and one UDoubleMS<1>,
and distributes nost operations to those classes. Listing 10 is
part of class UDoubleTest, Listing 11 is part of the demo program
and Listing 12is part of the output from the denp program.

Practical Use of UDoubleMS

An application that uses UDoubleMS nust include header uncertain.h
and must change all double variables that can be uncertain to

UDoubleMS. Input can be handled by operator>>() if it
is formatted as “nmean +/- sigm”; otherw se custominput
routines will be needed. CQutput should be formatted correctly

by the overl oaded operator<<() w thout nodification

The cl ass UDoubleMS<1> should be used in cases with only
one source of uncertainty. UDoubleMS<0> can be used where
there are multiple uncertainties and each independent
uncertainty gets mxed with other uncertainties exactly
once. Many applications will fit neither of these sets

of restrictions, and so will need the nore advanced cl asses
in this collection.

Speed | ssues

Dependi ng on the operations used in a program changing
variables from double to UDoubleMS will probably slow

t he program down by about a factor of three. For

many applications this slowdown will not be a probl em because
computers hav’ e become so nmuch faster in recent years and
because for many applications 1/0 or graphics take more CPU
time than floating-point. calculations.

In cases where this slowdown is unacceptable, a typedef
could be used for the type of all variables which may need
to be UDouble. Then a conpile-tinme definition could choose
to make a double version or a UDouble version, and the
UDouble version mght be used only occasionally to check
assunptions of uncertainty.

Speed could still be improved somewhat by adding versions

"of _all binary operations that accept one double operand

and one UDoubleMS operand. These versions could be faster
than the full two-UDoubleMS versions, but would contribute to
code bl oat.

O her Ubouble Cl asses

UboubleMS offers the sinplest possible nodel of uncertainty.

The ot her UDouble classes on the code disk offer nore accurate, but
nore computationally expensive, solutions to the probl em of
nodel i ng uncertainties. The UDoubleMSC cl ass uses some know edge
of the second derivative of functions (curve) to inprove

accuracy and (optionally) to warn when curves begin to break

down the applicability of the Gaussian model. It also warns

when discontinuities threaten the applicability of this nodel.

The correlation tracking cl ass,

UDoubleCT, uses the same underlying Gaussian model as the
UDboubleMsS cl ass, but keeps track of uncertainties from

mul tiple sources correctly. The ensenbl e class,

UDoubleEnsemble, does not depend on the Gaussian nodel but

i nstead nodels each uncertain variable with an ensenbl e of
possi bl e val ues.

Concl usi on

I Iike to think of these classes as adding intelligence to

an application, A carefully designed application using UDoubleMS
is not only making the basic calculations that a nore primtive
application would rmake but also “thinking” about the accuracy

of its results, Wth the UDoubleMSC class wth Gaussian breakdown
checking, the application could even check the accuracy of the
first-order check on accuracy.

Acknow edgenent s

This work was partly done at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract from the
Nati onal Aeronautics and Space Adm nistration.

Si debar: The Gaussian Approxi mation

Errors are nost frequently nodeled as belonging to a Gaussian, or
“bell curve” distribution. in this approximation each quantity is fully
characterized by only two paraneters: the central value, or nean,
and the deviation, or uncertainty. The nean tells what the

most likely value is, while the deviation tells how far the

actual value is likely to be spread around the nean. For a pure
Gaussian distribution there is about a 32% chance that the val ue
is more than one deviation away from the nean, a 4.5% chance that
the value is nore than 2 deviations away fromthe mean, and a

0. 3% chance that the value is nore than three deviations away from
t he mean.

VWhen the deviation is zero then the distribution is 100% certain
to have the val ue of the nean.

The probability density for a Gaussian distribution is proportional to
[need fornula printing here] e~-{(x-mean)~2/ (2*sigma~2)]

One reason for using the Gaussian nodel is how well it matches

many real. distributions. In fact, the Central Limt. Theorem
guarantees that for any

distribution with a nean and a deviation, the sum of n

variables with this distribution wili become more and nore
like a Gaussian dist ripution as n gets |arger.

The other reason for the popularit% of the Gaussian model

is its conputational sinplicity. he sum of two variabl es
with Gaussi an distributions has a Gaussian distribution. The
distribution is smooth and differentiable. It even Fourier
transforne into another Gaussian distribution.

Dr awbacks

But this nodel. is not always good enough. There are many exanpl es
of real -world distributions that are not. Gaussian. Time read from
a perfectly accurate system clock has uniformly distributed error
bet ween two consecutive ticks. (eg. if the resolution is seconds,
then a reading of 12:00:00 is equally l1ikely to be 12:00:00.01,

12:00:00.50, and 12:00:00.99 but absolutely will not be 11:59:59:99
or 12:00:01 .00.)

One particularly limiting problem with the Gaussian nodel is that

its “tails” (the edges of the distribution) are infinite. There

is a small but finite chance that the value is 100 deviations away

from the nean. But infinite tails cannot be made to model cases where the
di stribution nust have a 1imit. | may say that a block is 1.0 +/- 0.1

i nches wi de. The Gaussian interpretation of this statement all ows

a chance that the actual block has a negative width, but we know

this cannot be true.

Expandi ng the Gaussi an model

The nmean is sonetines referred to as the first nonment of a
distribution, and is calculated from a set of data sinply by
averagi ng the val ues of the data. The deviation is the second
nmonent and can be cal cul ated using the nean and the average of
t he squares of the val ues. Di stributions which are al nost
CGaussi an can be described nore fully using a few nore nonents
(the third nmoment is called skew and generally reflects the
asymretry of the distribution) . But hi gher noments are
increasingly difficult to conmpute accurately, and nust

be avoided or used with care. Wthout an infinite nunber of
nmonents, however, it is impossible to describe sone inportant
practical cases, such as tails with limits,

Loss of “Gaussi anness”

| stated earlier that sum of Gaussian distributions is

al so CGaussi an. Unfortunately, nost operations can produce
distributions that are not Gaussian even when the the operands

are . In the Gaussian approximation, application of a function

to an initial CGaussian variable is approxinmat.ed by transformation
by a tangent to the true function. Figure A shows failures of

Aut hor’ s Backgr ound:

Evan Manni ng has degrees in Applied Physics from Caltech and Stanford.
He has been working as a self-taught C programmer in defense and space
applications for the past 8 years. Currently he works for Telos
Informati on Systens as a consultant at NASA's Jet Propul sion Laboratory.
He can be reached at manning@alumni .caltech .edu.

